Functional Adult Outcomes 16 Years After Childhood Diagnosis of Attention-Deficit/Hyperactivity Disorder: MTA Results

Lily Hechtman, MD, James M. Swanson, PhD, Margaret H. Sibley, PhD, Annamarie Stehli, MPH, Elizabeth B. Owens, PhD, John T. Mitchell, PhD, L. Eugene Arnold, MD, Brooke S.G. Molina, PhD, Stephen P. Hinshaw, PhD, Peter S. Jensen, MD, Howard B. Abikoff, PhD, Guillermo Perez Algorta, PhD, Andrea L. Howard, PhD, Betsy Hoza, PhD, Joy Etcovitch, MA, Sylviane Houssais, MA, Kimberley D. Lakes, PhD, J. Quyen Nichols, BA, for the MTA Cooperative Group

Objective: To compare educational, occupational, legal, emotional, substance use disorder, and sexual behavior outcomes in young adults with persistent and desistent attention-deficit/hyperactivity disorder (ADHD) symptoms and a local normative comparison group (LNCG) in the Multimodal Treatment Study of Children with ADHD (MTA).

Method: Data were collected 12, 14, and 16 years post-baseline (mean age 24.7 years at 16 years postbaseline) from 476 participants with ADHD diagnosed at age 7 to 9 years, and 241 age- and sex-matched classmates. Probands were subgrouped on persistence versus desistence of DSM-5 symptom count. Orthogonal comparisons contrasted ADHD versus LNCG and symptom-persistent (50%) versus symptom-desistent (50%) subgroups. Functional outcomes were measured with standardized and demographic instruments.

Results: Three patterns of functional outcomes emerged. Post-secondary education, times fired/quit a job, current income, receiving public assistance, and risky sexual behavior showed the most common pattern: the LNCG group fared best, symptom-persistent ADHD group worst, and symptom-desistent ADHD group between, with the largest effect sizes between LNCG and symptom-persistent ADHD. In the second pattern, seen with emotional outcomes (emotional lability, neuroticism, anxiety disorder, mood disorder) and substance use outcomes, the LNCG and symptom-desistent ADHD group did not differ, but both fared better than the symptom-persistent ADHD group. In the third pattern, noted with jail time (rare), alcohol use disorder (common), and number of jobs held, group differences were not significant. The ADHD group had 10 deaths compared to one death in the LNCG.

Conclusion: Adult functioning after childhood ADHD varies by domain and is generally worse when ADHD symptoms persist. It is important to identify factors and interventions that promote better functional outcomes.

Key words: ADHD, adult outcomes, follow-up, MTA, functional outcomes

Controlled prospective follow-up studies of children with attention-deficit/hyperactivity disorder (ADHD) generally document significantly worse adult educational, occupational, social, and emotional impairment than that in matched non-ADHD controls.\(^1,5\) Previous prospective follow-up studies of children with ADHD have also indicated that adult outcome is not uniform, with many having continuing symptoms and impairment, some being severely functionally impaired and others (about 30%) functioning comparably to matched controls.\(^1,7\) What characterizes these different subgroups is not always clear.

Recent reports\(^3,7\) have suggested functional outcome differences between participants with persisting versus desisting ADHD symptoms. However, persistence of ADHD symptoms in these studies is not always optimally defined,\(^8\) and small sample sizes make subgrouping on symptom persistence difficult.

The 7-site MTA study followed 579 children aged 7 to 9 years with systematically diagnosed (using DSM-IV criteria via parent Diagnostic Interview Schedule for Children [DISC] and teacher reports) ADHD (combined type) and 258 age- and sex-matched classmates without ADHD who comprised a local normative comparison group (LNCG). Assessments were performed at 2, 3, 6, 8, 10, 12, 14, and 16 years postbaseline. This provides a highly diverse,\(^9\) representative, generalizable sample,\(^10\) and the largest to date.

DSM-5 symptom count criteria for adults from multiple informants on the Conners’ Adult ADHD Rating Scale (CAARS)\(^11\) were used to define persistence of symptoms. The diagnostic properties of the CAARS versus DISC were compared, and the CAARS was found to be superior in its diagnostic specificity and sensitivity.\(^9\) Evaluating functional outcomes in many domains (educational, occupational,
legal, emotional, substance use, and sexual behavior) can provide a comprehensive view of the long-term impairments of ADHD versus LNCG groups and between ADHD subgroups with persistent versus desistent symptoms.

We formulated two hypotheses based on previous MTA follow-ups and the accumulated literature: (a) adults with childhood-diagnosed ADHD would be significantly worse than the LNCG on multiple functional outcomes; and (b) individuals with ADHD with continuation of symptoms (symptom persistence) would have worse outcomes in multiple functional domains than those with symptom remission (symptom desistence).

METHOD
Study Sample
The MTA was originally designed to evaluate effects of treatments in a 14-month randomized clinical trial of 579 children (7–9.9 years old) assigned to 4 conditions: systematic medication management, multicomponent behavioral treatment, their combination, and treatment as usual in community care. After this treatment-by-protocol phase, the MTA continued as a naturalistic follow-up study. At the first follow-up (2 years postbaseline), the LNCG (289 classmates [258 without ADHD] matched on age and sex) was added when the ADHD participants were 9 to 12 years old. Follow-up assessments continued during childhood (3 years postbaseline), throughout adolescence (6, 8, and 10 years postbaseline), and into adulthood (12, 14, and 16 years postbaseline). The age range in adulthood was 19 to 28 years (mean = 24.7). Written informed consent was obtained, with procedures approved by local institutional review boards. Overall retention in adulthood (assessed at least once in the 3 adult assessments) was 476 of 579 (82%) for the ADHD group and 241 of 258 (93%) for the non-ADHD LNCG. Similar to adolescent attrition, participants lost at 16-year follow-up had, at baseline, significantly lower family income, younger maternal age, less maternal and paternal education, more paternal mental health problems, lower IQs, and higher teacher-rated ADHD and oppositional defiant disorder (ODD) scores than those retained.

Measurement
At age 18 years and after, the Conners’ Adult ADHD Rating Scale (CAARS) and the Diagnostic Interview Schedule for Children—Parent version (DISC-P) and Young Adult version (DISC-YA), instruments documented to have good reliability and validity, were completed by participants and parents. We used the oldest adult assessment point (12, 14, or 16 years) at which data were available.

For the educational domain, we analyzed participant report of current educational attainment.

Within the occupational domain, the number of jobs, average job length, times fired or quit, current income, and public assistance status were chosen a priori. Military service counted as employment. Within the emotional functioning domain, the Impulsivity/Emotional Lability subscale of the CAARS (participant and parent report) and the Neuroticism subscale of the NEO-Five-Factor Inventory (participant report) were analyzed. We also examined past-year presence of any of eight DSM anxiety disorders or three DSM mood disorders from the DISC-YA.

Within the substance use domain, participant report of DSM-IV substance use disorder in the past year from the DISC-YA included alcohol use disorder (AUD), marijuana use disorder (MUD), “other substance use disorder” (other SUD), including cocaine and hallucinogens, and “any substance use disorder” (any SUD), excluding nicotine.

Within the legal domain, participant report of police contact (yes/no) and jail time (yes/no) during the past 2 years was analyzed.

Within the sexual behavior domain, four outcomes were derived from the MTA Health Information and Demographic Survey: age of first sexual intercourse, number of sexual partners, number of pregnancies fathered or experienced by age 18 years, and number of offspring. Deaths were reported by site staff on a retention/attrition form.

Determination of ADHD Symptom Persistence
DSM-5 symptom-count criteria, that is, five symptoms reported either by the participant or by the parent in either the Inattention and/or Hyperactive-Impulsive domain on the CAARS, identified the symptom-persistent ADHD group. Symptom desistence was defined as neither ADHD domain threshold being exceeded by either source. In 23 cases in which self-report suggested no symptoms and parent report was missing, the case was excluded due to concerns of symptom underreporting by participants. The rate of symptom persistence under this definition was 50% (n = 226), with symptom desistence characterizing the remaining 50% (n = 227). Impairment, although measured, was not used to define symptom persistence/desistence because functional outcomes, which reflect levels of impairment, are the focus of this report.

Data Analyses
We used orthogonal comparisons to evaluate differences across multiple adult functional outcomes, comparing childhood diagnosis (ADHD versus LNCG) and persistence subgroups of ADHD (symptom persistence versus symptom desistence). Age at outcome assessment was covaried to adjust for “opportunity time” for educational attainment and number of jobs, sexual partners, and pregnancies, among others. For binary outcomes, we used binary logistic regressions; for dimensional outcomes, we used linear regressions. Poisson regressions were used for nonnormal distributions (e.g., number of offspring). The CAARS DSM-IV Hyperactive-Impulsive Symptom subscale was a covariate for analysis of the Impulsivity/Emotional Lability subscale to partial out impulsivity from emotional lability. We used the Benjamini-Hochberg false discovery rate (FDR) method to correct for multiple comparisons within each domain. All analyses were repeated, separately covarying for socioeconomic status (SES; income) and initial conduct disorder.

RESULTS
Educational Outcomes
Overall, the LNCG had higher educational attainments than participants with ADHD (Table S1, available online). The majority of participants with ADHD (61.7%) had a high school degree or less, whereas the majority of LNCG participants completed at least some college (60.8%). Showing a stepwise pattern, 37.1% of the LNCG obtained a bachelor’s degree compared to 17.8% (odds ratio [OR] = 2.7) of the symptom-desistent subgroup and 8.0% of the symptom-persistent subgroup (OR = 7.4) (Figure 1).

Occupational Outcomes
In four of five analyses, the ADHD group differed significantly from the LNCG (the number of jobs since previous assessment was not different) (Table 1). Effect sizes were
small for average job length, number of times fired/quit since last assessment, and current income, but large for percentage receiving public assistance: 16.0% of participants with ADHD versus 3.2% of LNCG participants. For comparisons of the ADHD subgroups, a stepwise pattern emerged for the three significant outcomes: the subgroup with symptom persistence showed the worst outcomes and the LNCG participants the best (effect sizes were always largest between these two groups), with the symptom-desistent subgroup intermediate. Most group differences were statistically significant at p < .05 after correcting for multiple comparisons, but effect sizes were small (up to \(d = 0.41\)), except for receipt of public assistance in the past year (OR = 8.7), for which symptom persistence was 22.2%, LNCG was 3.2%, and symptom desistence fell in between at 9.6%.

Emotional Outcomes
The ADHD group scored significantly worse than the LNCG on Impulsivity/Emotional Lability (self- and parent-report) and Neuroticism, but not rates of mood or anxiety disorders (Table S2, available online). The symptom-persistent subgroup scored worse on Impulsivity/Emotional Lability (self- and parent-report) and Neuroticism, and endorsed higher rates of mood (7.8% versus 1.8%, OR = 4.58) and anxiety disorders (14.2% versus 5.0%, OR = 3.12) than the symptom-desistent subgroup, which exhibited outcomes similar to those of the LNCG (Figure 2).

Legal Outcomes
Participants with ADHD (13.6%) were more likely (p = .028) to report police contact than the LNCG (9.4%), but this difference was no longer significant after controlling for multiple comparisons (Table 2). Jail time did not differ significantly. The symptom-persistent and symptom-desistent subgroups did not differ significantly on any legal outcome.

Substance Use Outcomes
The LNCG and ADHD groups did not differ significantly on any substance use measures (Table 2).
symptom-persistent subgroup displayed higher rates of MUD (26.7% versus 14.7%, \(p < .001 \)), “other SUD” (8.3% versus 1.9%, \(p = .002 \)), and “any SUD” (38.5% versus 28.7%, \(p = .004 \)) than the symptom-desistent subgroup, which exhibited rates similar to those of the LNCG. The symptom-persistent subgroup was 2.6 times as likely as the LNCG to meet criteria for the MUD diagnosis, and 4.3 times as likely to have an “other SUD.”

Sexual Behavior Outcomes

All four ADHD-LNCG comparisons were significant: ADHD was associated with younger age at first intercourse, more sexual partners, increased risk of pregnancy, and greater number of offspring by age 18 years, covarying age (Table 3). Probands reported more multiple offspring (6.9% versus 1.7% for LNCG). The symptom-persistent subgroup was significantly different from the symptom-desistent subgroup on age of first intercourse and marginally different on number of partners, but not risk of early pregnancy or number of offspring. Effect sizes were small/medium.

Sensitivity Analyses

Sensitivity analyses for all outcomes covaried SES (income) and initial conduct disorder separately (details are available in Supplement 1, available online). These did not alter the results except that job length was no longer significant after covarying conduct disorder, and risk of pregnancy and self-reported Impulsivity/Emotional Lability on the CAARS were no longer significant when income was covaried.

Deaths

Although not statistically significant, the group comparison is striking, with 10 deaths in the ADHD group (3 suicides, 4 homicides, 2 driving-under-the-influence accidents, 1 hit-and-run) versus 1 LNCG death (suicide).

DISCUSSION

The MTA, with 579 childhood-diagnosed, combined-type ADHD participants and 258 sex- and age-matched comparison participants without ADHD, provides the largest sample of prospectively followed young adults to date; it is very ethnically and socioeconomically diverse, and thus by and large generalizable to an ADHD (combined-subtype) population. However, one needs to keep in mind that the participants lost to follow-up (18% of the ADHD sample) were characterized by lower family income and parental education, more parental mental health problems,
lower participant IQ, higher ADHD scores, and higher rates of ODD than those retained. Because these are risk factors for poorer outcome, it is possible that a higher proportion of participants with ADHD would have had more negative outcomes had these participants been retained.

The large sample size allowed comparison not only of the ADHD versus LNCG groups but also of subgroups of participants with ADHD defined by persistence versus desistence of symptoms into early adulthood. Symptom persistence was defined by DSM-5 symptom criteria for adults, making it clinically relevant and permitting comparison with other outcome studies.

Our findings extend those of previous studies by showing three patterns of outcomes. The most common pattern is characterized by the LNCG group having the best outcomes, the symptom-persistent ADHD subgroup the worst, and the symptom-desistent subgroup falling between them. Obtaining a bachelor’s degree, times fired/quit a job, current income, receiving public assistance, and risky sexual activity all followed this pattern, with moderate to large effect sizes between the LNCG and symptom-persistent ADHD groups, and smaller effect sizes between symptom-desistent ADHD and the other two groups. This pattern shows that continuing ADHD symptoms have a significant negative impact on educational, occupational, and sexual functional domains by adulthood. Even if ADHD symptoms desist, however, the negative impact of earlier ADHD symptoms can still be seen, although the functional effects are less marked. It appears to be important both to treat continuing symptoms of ADHD and to focus on improving these functional outcomes early.

In the second pattern, the LNCG and symptom-desistent ADHD group did not differ significantly, but both functioned significantly better than the symptom-persistent ADHD group. This pattern was seen for emotional lability, neuroticism, anxiety and mood disorders, and substance use disorders. In this pattern, persistent ADHD symptoms continue to have a significant negative impact on emotional and substance use domains, but past ADHD symptoms do not appear to have a residual effect as found in the first pattern. Here, when ADHD symptoms desist, the functioning of young adults with previous ADHD approaches that of the comparison participants. This pattern illustrates the value of differentiating the symptom-persistent versus symptom-desistent ADHD subgroups in examining functioning and outcome. Persisting symptoms of ADHD may contribute to SUD risk either directly (e.g., impulsive decision making) or indirectly (e.g., poor coping skills) or as a misguided attempt at self-medication. Moreover, Barkley and Fisher (2010) linked emotional impulsivity to persistence of ADHD symptoms in adulthood, and Swanson et al. (2014) linked poor response inhibition to increased self-harm in women with ADHD. Thus, continuing to treat ADHD symptoms to “remission” and not just “improvement” is clinically important, because current symptom remission appears to be somewhat protective against anxiety, depression, and SUD.

In the third pattern, no significant differences were noted among the three groups. Number of jobs held, alcohol use disorder, and jail time followed this pattern. Notably, the number of jobs held was not significantly different across groups, although the times fired/quit, current income, and receiving public assistance were significantly worse for the symptom-persistent subgroup. Possibly, with less education, greater emotional lability, and more SUD, this subgroup found it more difficult to find another job after being fired or impulsively quitting, such that the number of jobs held did not differ despite shorter job length. In fact, the increased use of public assistance suggests more time unemployed in the.
TABLE 3 Sexual Behavior Outcomes

<table>
<thead>
<tr>
<th></th>
<th>LNCG Mean (SD)</th>
<th>ADHD Mean (SD)</th>
<th>B* (SE)</th>
<th>p</th>
<th>ADHD Desistence</th>
<th>Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>p</td>
<td></td>
<td></td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Age at first intercourse</td>
<td>17.2 (2.3)</td>
<td>16.3 (2.6)</td>
<td>1.31 (0.24)</td>
<td><.001^d</td>
<td>16.6 (2.6)</td>
<td>16.0 (2.5)</td>
</tr>
<tr>
<td>No. of partners</td>
<td>9.45 (13.3)</td>
<td>15.7 (25.0)</td>
<td>7.96 (2.1)</td>
<td><.001^d</td>
<td>13.5 (18.1)</td>
<td>17.8 (30.0)</td>
</tr>
<tr>
<td>Pregnancy by 18^c</td>
<td>3.7%</td>
<td>9.1%</td>
<td>1.05 (0.41)</td>
<td><.001^d</td>
<td>7.2%</td>
<td>11.0%</td>
</tr>
<tr>
<td>No. of offspring</td>
<td>0.113 (0.37)</td>
<td>0.298 (0.67)</td>
<td>-1.07 (0.26)</td>
<td><.001^d</td>
<td>0.249 (0.57)</td>
<td>0.348 (0.77)</td>
</tr>
</tbody>
</table>

Note: ΔR² is the proportion of variance in the dependent variable explained by contrasts between local normative comparison group (LNCG), attention-deficit/hyperactivity disorder (ADHD) desistence subgroup, and ADHD persistence subgroup after controlling for participant age. For categorical dependent variables, the Nagelkerke R² is reported. D = desistence; L = LNCG (local normative comparison group); P = persistence.

a Values are presented in absolute value format.
b Effect sizes for continuous dependent variables are Cohen’s d, calculated using a pooled standard deviation weighted by group size. Effect sizes for categorical dependent variables are odds ratios.
c Categorical dependent variable. Percentages are reported instead of means and standard deviations.
d Coefficients are log-odds estimates from logistic regression.

Indicates that the contrast is statistically significant after applying the Benjamini–Hochberg false discovery rate correction for multiple comparisons.

JOURNAL OF THE AMERICAN ACADEMY OF CHILD & ADOLESCENT PSYCHIATRY
VOLUME 55 NUMBER 11 NOVEMBER 2016
increased early mortality via accidents, suicides, or homicides in the ADHD population.

The association of persistence of ADHD symptoms and negative adult outcomes is clear. However, we should point out that the persistence group also has more comorbidity (e.g., anxiety, depression, MUD), and these comorbidities may also be contributing to negative outcomes. A recent article by Roy et al. explored childhood factors that may be associated with or contribute to persistence of ADHD symptoms in adulthood. Important predictive factors included baseline initial ADHD symptom severity, parental mental health, and parenting practices. Caye et al. identified severity of ADHD, treatment, and comorbid conduct disorder and major depression as important predictors of persistence of ADHD into adulthood.

A large, diverse, fairly representative sample and a matched local normative comparison group with a respectable retention rate are all strengths of the study. Whenever possible, standardized, validated, age-appropriate measures were used, with more than one informant. Clinically relevant DSM-5 symptom criteria were used to distinguish symptom persistence and desistence ADHD subgroups. Finally, sensitivity analyses covaried all results separately on SES persistence and desistence ADHD subgroups. Finally, symptom criteria were used to distinguish symptom

In the young adult follow-up period, the participants themselves were the principal informants of functional outcomes. Their reports may not have been completely accurate or objective because self-report biases are not uncommon in this population. However, more objective sources may also have flaws. Police records and other official records are often the “tip of the iceberg,” as many acts are either not detected or not officially reported. Furthermore, parents become less knowledgeable about certain aspects of the young adult’s life as their children age. Thus, conducting thorough assessments for adults with ADHD remains challenging.

DSM-5 symptom criteria were used to define symptom persistence and desistence subgroups because of clinical relevance and future comparisons, but alternative definitions (e.g., clinician gold standard) may offer additional insights. The contributions of psychiatric comorbidities both as predictors and as correlated outcomes are important areas that are being explored in other papers.

Another limitation is that personality disorders, particularly antisocial personality disorders, were not evaluated as outcomes. It is thus unclear whether this diagnosis differed in the persistent, desistent, and LNCG groups, although other studies clearly suggest that antisocial personality disorder and symptom persistence often coexist.

Effects of treatment on outcome were not specifically explored in this article, as this was addressed in detail by Swanson et al. In that paper, the authors showed that there were no treatment group differences after 3-year follow-up. Furthermore, after 14 months, all participants went to the community for treatment, where there may have been self-selection biases and documented less-than-optimal medication treatment. Finally, there is a marked decline in medication use in adolescence and adulthood, with only 3% to 10% of the participants using medication, often very intermittently.

A final limitation is that the LNCG was recruited at 2 years rather than initially. It is unclear whether this would have an impact on study results as the LNCG group participants were matched for age and sex and attended the same schools.

This study extends previous longitudinal studies of ADHD by documenting three different patterns of adult outcomes. The most common, seen in educational, occupational, and sexual/reproductive domains, was characterized by LNCG participants functioning best, symptom-persistent ADHD participants worst, and symptom-desistent ADHD participants between. Thus, some important outcomes are influenced additively by both current symptoms and residual effects of past symptoms.

In the second pattern, seen with emotional lability, neuroticism, anxiety, mood, and substance use disorders, the LNCG and symptom-desistent ADHD group did not differ significantly, and both were significantly better than the symptom-persistent ADHD group. This suggests that some negative outcomes are linked mainly to residual symptoms, so symptoms need to be treated to remission, not just improvement.

The third pattern showed no significant differences among the three groups on number of jobs, AUD, and jail time, probably due mainly to very high or very low frequency.

These findings suggest that functional outcomes in adults who were diagnosed with ADHD in childhood are not uniform but differ across domains, giving rise to different patterns of outcomes. The persistence or desistence of ADHD symptomatology in adulthood appears to influence these patterns of outcomes. Thus, both ADHD symptoms and functioning need to be targets of appropriate, innovative, and ongoing intervention in this chronic condition. &
REFERENCES

SUPPLEMENT 1

Results of Covarying Baseline Socioeconomic Status (Family Income) and Conduct Disorder
For the attention-deficit/hyperactivity disorder (ADHD) and local normative comparison group (LNCG) comparison, all contrasts remained the same (significant or nonsignificant) even with false discovery rate (Benjamini and Hochberg, 1995) corrections, in the following domains with baseline family income and conduct disorder covaried separately:

Educational Outcomes
- Education level
 - High school or less
 - College/trade
 - Bachelor’s degree
 - Graduate degree

Occupational Outcomes
- Number of jobs
- Times fired/quit
- Past-year income
- Public assistance

Emotional Outcomes
- Impulsivity/emotional lability (parent report)
- Neuroticism
- Anxiety disorder
- Mood disorder

Legal Outcomes
- Any police contact
- Jail time

Substance Use Outcomes
- Alcohol use disorder
- Marijuana use disorder
- Other substance use disorder
- Any substance use disorder

Sexual Behavior Outcomes
- Age at first intercourse
- Number of partners
- Number of offspring

Covarying baseline income made:
1. Self-reported impulsivity/emotional lability no longer significant
2. Risk of pregnancy by age 18 years no longer significant

Covarying baseline conduct disorder made:
1. Average job length no longer significant

Table S1: Educational Outcomes

<table>
<thead>
<tr>
<th>LNCG</th>
<th>ADHD</th>
<th>B (SE)</th>
<th>p</th>
<th>ADHD Symptoms</th>
<th>Effect Sizesb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td>Desistence</td>
<td>Persistence</td>
</tr>
<tr>
<td>Education Level</td>
<td>1.29 (0.16)</td>
<td><.001c</td>
<td>0.48 (0.19)</td>
<td>.014c</td>
<td>0.10</td>
</tr>
<tr>
<td>High school/less</td>
<td>39.2</td>
<td>61.7</td>
<td>57.8</td>
<td>65.6</td>
<td></td>
</tr>
<tr>
<td>College/trade</td>
<td>18.8</td>
<td>23.2</td>
<td>20.9</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>37.1</td>
<td>12.9</td>
<td>17.8</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Graduate degree</td>
<td>5.0</td>
<td>2.2</td>
<td>3.6</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(\Delta R^2\) is the proportion of variance in the dependent variable explained by contrasts between local normative comparison group (LNCG), attention-deficit/hyperactivity disorder (ADHD) desistence subgroup, and ADHD persistence subgroup after controlling for participant age. The Nagelkerke \(R^2\) is reported. D = desistence; L = LNCG (local normative comparison group); P = persistence.

bEffect sizes are odds ratios and represent probability of obtaining a bachelor’s degree. D–L shows the odds ratio between the ADHD-desistent subgroup and the LNCG; P–L shows the odds ratio between the ADHD-persistent subgroup and the LNCG; P–D shows the odds ratio between the ADHD-persistent and ADHD-desistent subgroups.

Substantiates that the contrast is statistically significant after applying the Benjamini–Hochberg false discovery rate correction for multiple comparisons.
<table>
<thead>
<tr>
<th>Emotional Functioning</th>
<th>LNCG Mean (SD)</th>
<th>ADHD Mean (SD)</th>
<th>B (SE)</th>
<th>p</th>
<th>Desistence Mean (SD)</th>
<th>Persistence Mean (SD)</th>
<th>B (SE)</th>
<th>p</th>
<th>ΔR²</th>
<th>D–L</th>
<th>P–L</th>
<th>P–D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsivity/Emotional Lability (CAARS-Parent)</td>
<td>0.44 (0.48)</td>
<td>1.11 (0.79)</td>
<td>0.14 (0.04)</td>
<td><0.001d</td>
<td>0.58 (0.42)</td>
<td>1.50 (0.77)</td>
<td>0.24 (0.06)</td>
<td><0.001d</td>
<td>0.15</td>
<td>0.31</td>
<td>1.64</td>
<td>1.42</td>
</tr>
<tr>
<td>Impulsivity/Emotional Lability (CAARS-Self)</td>
<td>0.42 (0.43)</td>
<td>0.73 (0.61)</td>
<td>0.07 (0.03)</td>
<td>0.027d</td>
<td>0.45 (0.40)</td>
<td>0.91 (0.65)</td>
<td>0.09 (0.04)</td>
<td>0.016d</td>
<td>0.005</td>
<td>0.07</td>
<td>0.88</td>
<td>0.82</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>1.31 (0.62)</td>
<td>1.49 (0.66)</td>
<td>0.17 (0.05)</td>
<td>0.001d</td>
<td>1.31 (0.60)</td>
<td>1.61 (0.67)</td>
<td>0.30 (0.06)</td>
<td><0.001d</td>
<td>0.051</td>
<td>0.00</td>
<td>0.46</td>
<td>0.47</td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td>8.1%</td>
<td>9.5%</td>
<td>0.14 (0.29)</td>
<td>.630</td>
<td>5.0%</td>
<td>14.2%</td>
<td>1.14 (0.37)</td>
<td>.002d</td>
<td>0.057</td>
<td>0.59</td>
<td>1.77</td>
<td>3.12</td>
</tr>
<tr>
<td>Mood disorder</td>
<td>3.4%</td>
<td>4.8%</td>
<td>0.23 (0.43)</td>
<td>.597</td>
<td>1.8%</td>
<td>7.8%</td>
<td>1.52 (0.57)</td>
<td>.007d</td>
<td>0.098</td>
<td>0.54</td>
<td>1.98</td>
<td>4.58</td>
</tr>
</tbody>
</table>

Note: Conners’ Adult ADHD (attention-deficit/hyperactivity disorder) Rating Scale (CAARS) DSM-IV Hyperactive-Impulsive subscale scores were also covaried when the Impulsivity/Emotional Lability subscale of the CAARS was considered to partial out variance accounted for by impulsivity. Item-level mean scores were considered for the Impulsivity/Emotional Lability (ranging from 0 to 3) and Neuroticism (ranging from 0 to 4) subscales. Missing data carried forward from 14- or 12-year assessments for CAARS analysis, and 14, 12, 10, and 8 for NEO analysis. ΔR² is the proportion of variance in the dependent variable explained by contrasts between local normative comparison group (LNCG), ADHD desistence and ADHD persistence after controlling for participant age. For categorical dependent variables, the Nagelkerke R² is reported.

aB Values are presented in absolute value format.
bEffect sizes for continuous dependent variables are Cohen’s d, calculated using a pooled standard deviation weighted by group size. Effect sizes for categorical dependent variables are odds ratios.
cCategorical dependent variable. Percentages are reported instead of means and standard deviations. dCoefficients are log-odds estimates from logistic regression.
dIndicates that the contrast is statistically significant after applying the Benjamini–Hochberg false discovery rate correction for multiple comparisons.